應用

技術

物聯(lián)網(wǎng)世界 >> 物聯(lián)網(wǎng)新聞 >> 物聯(lián)網(wǎng)熱點新聞
企業(yè)注冊個人注冊登錄

生成式 AI 火了:硅谷押注,讓你把簡單文字變成圖像甚至視頻

2022-10-10 09:30 網(wǎng)易科技
關鍵詞:AI圖像生成

導讀:最近幾年興起的所謂“生成式人工智能(generative AI)”正吸引硅谷科技巨頭和風投機構的興趣,這種 AI 可以依據(jù)少量詞匯在幾秒鐘內生成與之相匹配的圖像。

10 月 9 日消息,最近幾年興起的所謂“生成式人工智能(generative AI)”正吸引硅谷科技巨頭和風投機構的興趣,這種 AI 可以依據(jù)少量詞匯在幾秒鐘內生成與之相匹配的圖像。分析師預計,這種技術將被廣泛用于各行各業(yè),并產生數(shù)萬億美元的經(jīng)濟價值。

雖然這些計算機程序生成的圖像并不完美,比如手上出現(xiàn)多余的手指,四肢不自然的彎曲等。同時,圖像生成器在處理文本時也會遇到問題,例如生成無意義的符號等。然而,這些圖像生成程序可能是一場科技熱潮的開始。硅谷風投機構 NextView Ventures 的投資人大衛(wèi)?貝塞爾(David Beisel)說:“在過去的三個月里,‘生成式人工智能’這個詞已經(jīng)變成了流行語?!?/p>

從 2021 年開始,生成式 AI 技術取得了巨大進步,甚至激勵許多人辭掉工作去創(chuàng)辦新公司,夢想著 AI 將來可以為新一代科技巨頭提供動力。

在過去五年左右的時間里,AI 領域始終處于蓬勃發(fā)展階段,但這些進步大多與理解現(xiàn)有數(shù)據(jù)有關。AI 模型已經(jīng)變得足夠高效,可以識別人們剛剛用手機拍攝的照片中是否有一只貓。此外,這些模型也足夠可靠,每天可以為谷歌搜索引擎提供數(shù)十億次搜索結果。不過,生成式 AI 模型可以生成以前沒有的全新東西。換句話說,它們是在創(chuàng)造,而不僅僅是在分析數(shù)據(jù)。

AI 與機器學習平臺 Craiyon Productive AI 的創(chuàng)建者鮑里斯?戴瑪(Boris Dayma)說:“最令人感到印象深刻的是,生成式 AI 也能創(chuàng)作新的東西。它們不僅僅是創(chuàng)造類似的舊有圖像,還可以創(chuàng)造與以前完全不同的新事物?!?/p>

硅谷知名風投公司紅杉資本 (Sequoia Capital) 在其網(wǎng)站上發(fā)文表示:“從游戲到廣告再到法律方面,生成式 AI 可能會改變所有需要人類創(chuàng)造力發(fā)揮作用的領域。這種技術有可能產生數(shù)萬億美元的經(jīng)濟價值?!备鼮橛腥さ氖牵t杉資本還在帖子中指出,其上述文章部分是由 GPT-3 撰寫的,后者本身就是能夠生成文本的生成式 AI。

生成式 AI 的工作原理

圖像生成使用的技術來自機器學習的一個子集,稱為深度學習。自從 2012 年一篇關于圖像分類的里程碑式論文重新點燃人們對這項技術的興趣以來,深度學習推動了 AI 領域的大部分進步。深度學習使用在大數(shù)據(jù)集上訓練的模型,直到該程序理解這些數(shù)據(jù)中的關系。然后,該模型可以用于應用程序,如識別圖片中是否有狗或翻譯文本等。

圖像生成器的工作原理就是逆轉這個過程。它們不是將英語翻譯成法語,而是將英語短語轉換成圖像。它們通常有兩個主要部分組成,一個是處理初始短語的部分,另一個是將數(shù)據(jù)轉換成圖像的部分。

第一部分生成式 AI 基于名為 Generative Adversarial Networks(生成式對抗網(wǎng)絡,簡稱 GAN)的方法。此前,這些 GAN 通常被用于生成不存在的人的照片。本質上,它們的工作方式是讓兩個 AI 模型相互競爭,以更好地創(chuàng)建符合預定目標的圖像。

而較新的方法通常使用轉換器,這是谷歌于 2017 年論文中首次提出的概念。這是一項新興技術,可以利用更大的數(shù)據(jù)集,盡管其培訓成本可能高達數(shù)百萬美元。

第一個獲得大量關注的圖像生成器是 Dall-E,它是硅谷初創(chuàng)公司 OpenAI 于 2021 年推出的項目。OpenAI 今年發(fā)布了功能更強大的更新版本。專注于生成式 AI 的開發(fā)者克里斯蒂安?坎特雷爾(Christian Cantrell)說:“有了 Dall-E 2,這真的是我們跨越恐怖谷效應(Uncanny Valley)的時刻。”

另一個常用的、基于 AI 的圖像生成器是 Craiyon,以前被稱為 Dall-E Mini,它可以在網(wǎng)絡上買到。用戶輸入短語后,可以幾分鐘內在瀏覽器中看到其給出的繪圖。

據(jù) AI 與機器學習平臺 Craiyon Productive AI 的創(chuàng)建者戴瑪稱,自 2021 年 7 月推出以來,Craiyon 現(xiàn)在每天生成約 1000 萬張圖片,總計生成 10 億張以前從未見過的圖片。在今年早些時候使用量飆升后,戴瑪開始將全部精力投入到 Craiyon 上。他說,他專注于使用廣告來保持用戶免費使用,因為該網(wǎng)站的服務器成本很高。Craiyon 上有個推特賬號,專門發(fā)布最奇怪、最有創(chuàng)意的圖片,它擁有超過 100 萬名粉絲。

但最能激發(fā)人們熱情的項目是 Stable Diffusion,該項目于今年 8 月向公眾發(fā)布。它的代碼可以在 GitHub 上獲得,可以在電腦上運行,也可以在云端或通過編程接口運行。這讓用戶可以根據(jù)自己的目的調整程序代碼,或者在其基礎上構建新程序。

舉例來說,Stable Diffusion 通過一個插件集成到 Adobe Photoshop 中,允許用戶生成背景和圖像的其他部分,然后他們可以使用圖層和其他 PS 工具直接在應用中操作,將生成式 AI 從生成成品圖像的技術變成了專業(yè)人士可以使用的工具。

該插件的開發(fā)者坎特雷爾在 Adobe 工作了 20 年,今年辭職專注于生成式 AI。這位資深人士表示,該插件已被下載數(shù)萬次。藝術家們告訴他,他們把它用在了無數(shù)他意想不到的地方,比如制作哥斯拉的動畫,或者以藝術家可以想象的任何姿勢創(chuàng)作蜘蛛俠的圖像。

使用生成式 AI 的一種新興藝術是如何構建“提示”,即生成圖像的短語。名為 Lexica 的搜索引擎可以將 Stable Diffusion 的圖像和可用于生成它們的確切單詞字符串聯(lián)起來。Reddit 和 Discord 等平臺上,都有如何引導人們輸入想要生成圖像的短語技巧。

創(chuàng)企、云服務提供商和芯片制造商或受益最大

許多投資者將生成式 AI 視為一種潛在的變革性平臺,就像智能手機或互聯(lián)網(wǎng)的早期一樣。這種轉變極大地擴大了可能能夠使用這項技術的潛在市場規(guī)模。

坎特雷爾認為,生成式 AI 類似于一種更基礎的技術,即數(shù)據(jù)庫。他說:“生成式 AI 有點像數(shù)據(jù)庫,數(shù)據(jù)庫幫助解鎖了應用程序的巨大潛力。我們生活中使用過的幾乎每款應用都是建立在數(shù)據(jù)庫之上的,但沒有人關心數(shù)據(jù)庫是如何工作的,他們只知道如何使用它。”

Compound VC 管理合伙人邁克爾?鄧普西(Michael Dempsey)表示,以前僅限于實驗室的技術進入主流的時刻“非常罕見”,吸引了風險投資者的大量關注,他們喜歡在潛力巨大的領域下注。但他警告說,生成式 AI 目前處于更接近炒作周期頂峰的“好奇心階段”。處于這個階段的公司可能會倒閉,因為它們沒有專注于企業(yè)或消費者愿意付費的特定用途。

該領域的其他人認為,今天開創(chuàng)這些技術的初創(chuàng)公司最終可能會挑戰(zhàn)目前主導 AI 領域的軟件巨頭,包括谷歌、Facebook 母公司 Meta 以及微軟,并為下一代科技巨頭的崛起鋪平道路。

Hugging Face 首席執(zhí)行官克萊門特?德蘭格(Clement Delangue)說:“將會有一大批價值萬億美元的新公司誕生,這些初創(chuàng)公司將以這種新的技術為基礎。”Hugging Face 是個與 GitHub 類似的開發(fā)者平臺,托管著預先培訓的 AI 模型,包括 Craiyon 和 Stable Diffusio。它的目標是讓程序員更容易構建 AI 技術。

有些公司已經(jīng)獲得了大量投資。Huging Face 在今年早些時候從 Lux Capital 和紅杉資本等投資者那里籌集了資金后,估值達到 20 億美元。該領域最著名的初創(chuàng)公司 OpenAI 已經(jīng)從微軟和 Khosla Ventures 獲得了超過 10 億美元的資金。與此同時,Stable Diffusion 開發(fā)商 Stability AI 正在洽談以高達 10 億美元的估值籌集風險資金。

亞馬遜、微軟和谷歌等云服務提供商也可能受益,因為生成式 AI 可能是計算密集型技術。Meta 和谷歌已經(jīng)聘請了該領域諸多杰出人才,希望將這種先進技術整合到公司的產品中。今年 9 月,Meta 宣布了名為“Make-A-Video”的 AI 計劃,通過生成視頻而不僅僅是圖像,使這項技術更上一層樓。

Meta 首席執(zhí)行官馬克?扎克伯格(Mark Zuckerberg)在他的 Facebook 頁面上發(fā)帖稱:“這是一個令人驚嘆的進步。生成視頻比生成照片難得多,因為除了正確生成每個像素之外,系統(tǒng)還必須預測它們會隨著時間的推移發(fā)生怎樣的變化?!弊罱?,谷歌也發(fā)布了名為 Phenaki 的程序代碼,可以將文本轉換為時長幾分鐘的視頻。

這股熱潮也可能給英偉達、AMD 和英特爾等芯片制造商帶來提振,他們的圖形處理器是訓練和部署 AI 模型的理想選擇。在上周的會議上,英偉達首席執(zhí)行官黃仁勛強調,生成式 AI 是該公司最新芯片的關鍵用途,并稱這類技術可能很快就會給通信領域帶來革命性的變化。

不過,生成式 AI 為終端用戶帶來的好處依然有限。如今許多令人興奮的事情都圍繞著免費或低成本的實驗進行。例如,有些作者已經(jīng)嘗試使用圖像生成器為文章制作插圖。英偉達正嘗試使用模型來生成新的人、動物、車輛或家具的 3D 圖像,這些圖像可以填充到虛擬游戲世界中。

倫理問題難應對

最終,每個開發(fā)生成式 AI 的人都將不得不努力解決圖像生成器帶來的倫理問題。

首先是就業(yè)問題。盡管許多程序需要強大的圖形處理器,但計算機生成的內容仍然比專業(yè)插畫家的時間成本便宜得多,后者每小時的報酬可能高達數(shù)百美元。生成式 AI 可能會給藝術家、視頻制作人和其他以創(chuàng)作作品為生的人帶來大麻煩。Compound VC 管理合伙人邁克爾?鄧普西說:“事實證明,機器學習模型可能會變得比人類工作得更好、更快、更便宜?!?/p>

圍繞原創(chuàng)性和所有權,生成式 AI 也會帶來更復雜的挑戰(zhàn)。這種 AI 模型是利用大量現(xiàn)有圖像進行培訓的,原始圖像的創(chuàng)建者是否對以原創(chuàng)風格生成的圖像擁有版權仍在爭論中。一位藝術家最近在美國科羅拉多州的藝術比賽中獲勝,他使用的圖像主要是由名為 MidJourney 的生成式 AI 創(chuàng)作的。他在獲勝后接受采訪時表示,他從自己生成的數(shù)百張圖像中選擇了一張,然后在 PS 中對其進行了調整和處理。

由 Stable Diffusion 生成的一些圖像似乎留有水印,這表明原始數(shù)據(jù)集的一部分受到版權保護。有些提示指南建議用戶使用特定的、在世藝術家的名字,以便在模仿該藝術家創(chuàng)作風格的過程中獲得更好的結果。上個月,Getty Images 禁止用戶將生成式 AI 圖像上傳到其庫存圖像數(shù)據(jù)庫中,因為其擔心引發(fā)侵權糾紛。

圖像生成器還可以用來創(chuàng)建商標人物或目標的新圖像,如小黃人、漫威角色或《權力的游戲》中的王座。隨著圖像生成軟件變得越來越好,它也有可能欺騙用戶,讓他們相信虛假信息,或者顯示從未發(fā)生過的事件的圖像或視頻。

開發(fā)者還必須努力應對這樣一種可能,即基于大量數(shù)據(jù)訓練的 AI 模型可能會在數(shù)據(jù)中包含與性別、種族或文化相關的偏見,這可能會導致模型在輸出中展示這種偏見。Huging Face 已經(jīng)發(fā)布了有關倫理問題的材料,并就以負責任態(tài)度開發(fā) AI 模型的問題進行了討論。

Hugging Face 首席執(zhí)行官克萊門特?德蘭格說:“我們在這些模型上看到了短期和當前挑戰(zhàn),因為它們屬于概率模型,在大數(shù)據(jù)集上訓練,往往會吸收很多偏見?!彼e例稱,生成式 AI 曾被要求繪制“軟件工程師”的畫像,結果其生成了白人男性的圖像。